Mechano-Biology and Physics of Life (6th edition)

25/01/2024 - Grenoble (France)

Abstracts > Ponomareva Svetlana

Vibrating magnetic particles as a tool for new therapies
Robert Morel  1@  , Andrea Visonà  1, 2  , Cecile Naud  1, 3  , Caroline Thebault  1  , Svetlana Ponomareva  1  , Daniela Iglesias-Rojas  1, 4  , Hélène Joisten  1  , François Berger  3  , Marie Carriere  5  , Yanxia Hou  5  , Alice Nicolas  2  , Bernard Dieny  1  
1 : SPINtronique et TEchnologie des Composants
Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble, Université Grenoble Alpes
2 : Laboratoire des technologies de la microélectronique
Commissariat à l'énergie atomique et aux énergies alternatives, Centre National de la Recherche Scientifique, Université Grenoble Alpes
3 : BrainTech Laboratory [CHU Grenoble Alpes - Inserm U1205]
CHU Grenoble, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes
4 : Dept. Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
5 : SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé
Institut de Chimie - CNRS Chimie, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble, Université Grenoble Alpes

The mechanical vibration of magnetic particles under low frequency magnetic field allows for the application of mechanical stress at the cell level. This mechanical stress induces a large variety of physiological reactions from the cells depending on their nature and on the intensity of the magneto-mechanical stimulation. It has for instance a strong influence on the cells cytoskeleton that triggers a variety of cell physiological reactions. Using U87 glioma brain cancer cells, we observed that a weak stimulation induces already a disorganization of the cell cytoskeleton resulting in a cell contraction, a loss of motility and a temporary stops of the mitosis. A stronger stimulation can induce the apoptotic cell death [1, 2], which can lead to a new approach towards cancer treatment.

Studies on cancer cells were conducted in-vitro as well as in-vivo revealing quite different results for a variety of reasons. Ongoing studies are carried out on spheroids of cells embedded in 3D gels, which represent in-vitro models much closer to in-vivo situations.

Experiments were also conducted on INS1 pancreatic cells where it has been demonstrated that the magnetically induced mechanical stimulation allows enhancing insulin release, which can also open a new route towards innovative diabetes treatment [3].

 

[1] S. Leulmi et al., Nanoscale 7, 15904 (2015).

[2] C. Naud et al., Nanoscale Adv. 2, 3632 (2020).

[3] S. Ponomareva et al., Nanoscale 14, 13274 (2022).


Online user: 2 Privacy
Loading...